October 13, 2024
Liang, J., Jiang, L., Murphy, K., Yu, T. & Hauptmann, A. The garden of forking paths: Towards mu.......
  • Liang, J., Jiang, L., Murphy, K., Yu, T. & Hauptmann, A. The garden of forking paths: Towards multi-future trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10508–10518 (2020).

  • Tang, Y. C. & Salakhutdinov, R. Multiple futures prediction. Advances in Neural Information Processing Systems 32 (2019).

  • Chai, Y., Sapp, B., Bansal, M. & Anguelov, D. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. In Conference on Robot Learning. 86–99 (2020).

  • Smith, T., Chen, Y., Hewitt, N., Hu, B. & Gu, Y. Socially aware robot obstacle avoidance considering human intention and preferences. International Journal of Social Robotics. 1–18 (2021).

  • Chen, Y., Smith, T., Hewitt, N., Gu, Y. & Hu, B. Effects of human personal space on the robot obstacle avoidance behavior: A human-in-the-loop assessment. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 65, 1195–1199 (SAGE Publications Sage CA: Los Angeles, CA, 2021).

  • Hentout, A., Aouache, M., Maoudj, A. & Akli, I. Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017. Advanced Robotics. 33, 764–799 (2019).

    Article 

    Google Scholar 

  • Kruse, T., Basili, P., Glasauer, S. & Kirsch, A. Legible robot navigation in the proximity of moving humans. In 2012 IEEE workshop on advanced robotics and its social impacts (ARSO). 83–88 (IEEE, 2012).

  • Fernando, T., Denman, S., Sridharan, S. & Fookes, C. Soft+ hardwired attention: An lstm framework for human trajectory prediction and abnormal event detection. Neural networks. 108, 466–478 (2018).

    Google Scholar 

  • Kosaraju, V. et al. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks. Advances in Neural Information Processing Systems 32 (2019).

  • Helbing, D. & Molnar, P. Social force model for pedestrian dynamics. Physical review E. 51, 4282 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, Z. et al. Autonomous social distancing in urban environments using a quadruped robot. IEEE Access. 9, 8392–8403 (2021).

    Article 

    Google Scholar 

  • Di Lallo, A. et al. Medical robots for infectious diseases: Lessons and challenges from the covid-19 pandemic. IEEE Robotics & Automation Magazine 28, 18–27 (2021).

    Article 

    Google Scholar 

  • Chen, Y., Luo, Y., & Hu, B. Towards Next Generation Cleaning Tools: Factors Affecting Cleaning Robot Usage and Proxemic Behaviors Design. Frontiers in Electronics 14 (2022).

  • Chau, P. Y. An empirical assessment of a modified technology acceptance model. Journal of management information systems. 13, 185–204 (1996).

    Article 

    Google Scholar 

  • Pellegrini, S., Ess, A., Schindler, K. & Van Gool, L. You’ll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th International Conference on Computer Vision. 261–268 (IEEE, 2009).

  • Lerner, A., Chrysanthou, Y. & Lischinski, D. Crowds by example. In Computer graphics forum. vol. 26, 655–664 (Wiley Online Library, 2007).

  • Majecka, B. Statistical models of pedestrian behaviour in the forum. Master’s thesis, School of Informatics, University of Edinburgh. (2009).

  • Benfold, B. & Reid, I. Stable multi-target tracking in real-time surveillance video. In CVPR 2011. 3457–3464 (IEEE, 2011).

  • Schneider, N. & Gavrila, D. M. Pedestrian path prediction with recursive bayesian filters: A comparative study. In German Conference on Pattern Recognition. 174–183 (Springer, 2013).

  • Martin-Martin, R. et al. Jrdb: A dataset and benchmark of egocentric robot visual perception of humans in built environments. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

  • Zhou, B., Wang, X. & Tang, X. Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2871–2878 (IEEE, 2012).

  • Brščić, D., Kanda, T., Ikeda, T. & Miyashita, T. Person tracking in large public spaces using 3-d range sensors. IEEE Transactions on Human-Machine Systems. 43, 522–534 (2013).

    Article 

    Google Scholar 

  • Kratzer, P. et al. Mogaze: A dataset of full-body motions that includes workspace geometry and eye-gaze. IEEE Robotics and Automation Letters. 6, 367–373 (2020).

    Article 

    Google Scholar 

  • CMU. CMU graphics lab motion capture database. http://mocap.cs.cmu.edu (2003).

  • Ionescu, C., Papava, D., Olaru, V. & Sminchisescu, C. Human3. 6 m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence. 36, 1325–1339 (2013).

    Article 

    Google Scholar 

  • Mandery, C., Terlemez, Ö., Do, M., Vahrenkamp, N. & Asfour, T. The kit whole-body human motion database. In 2015 International Conference on Advanced Robotics (ICAR). 329–336 (IEEE, 2015).

  • Ngo, T. T., Makihara, Y., Nagahara, H., Mukaigawa, Y. & Yagi, Y. The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recognition 47, 228–237 (2014).

    Article 
    ADS 

    Google Scholar 

  • Subramanian, R. et al. Orientation invariant gait matching algorithm based on the kabsch alignment. In IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). 1–8 (IEEE, 2015).

  • Gadaleta, M. & Rossi, M. Idnet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recognition. 74, 25–37 (2018).

    Article 
    ADS 

    Google Scholar 

  • Chen, Y., Yang, C., Gu, Y. & Hu, B. Influence of Mobile Robots on Human Safety Perception and System Productivity in Wholesale and Retail Trade Environments: A Pilot Study. IEEE Transactions on Human-Machine Systems 52, 624–635 (2022).

    Article 

    Google Scholar 

  • Chen, Y. et al. Effects of autonomous mobile robots on human mental workload and system productivity in smart warehouses: A preliminary study. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 64, 1691–1695 (SAGE Publications Sage CA: Los Angeles, CA, 2020).

  • Quigley, M. et al. ROS: an open-source Robot Operating System. ICRA workshop on open source software. 3, 5 (2009).

    Google Scholar 

  • Grisetti, G., Stachniss, C. & Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE transactions on Robotics. 23, 34–46 (2007).

    Article 

    Google Scholar 

  • Fox, D., Burgard, W., Dellaert, F. & Thrun, S. Monte carlo localization: Efficient position estimation for mobile ro-bots. AAAI/IAAI. 343–349 (1999).

  • Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische mathematik. 1, 269–271 (1959).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Gerkey, B. P. & Konolige, K. Planning and control in unstructured terrain. In ICRA Workshop on Path Planning on Costmaps. (2008).

  • Luo, Y., Zheng, H., Chen, Y., Giang, W. C. & Hu, B. Influences of smartphone operation on gait and posture during outdoor walking task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 64, 1723–1727 (2020).

    Article 

    Google Scholar 

  • Luo, Y., Lu, X., Ahrentzen, S. & Hu, B. Impact of destination-based visual cues on gait characteristics among adults over 75 years old: A pilot study. Gait & Posture 87, 110–116 (2021).

    Article 

    Google Scholar 

  • Chen, Y. et al. Human Mobile Robot Interaction in the Retail Environment. Science Data Bank. https://doi.org/10.11922/sciencedb.01351 (2022).

  • Rudenko, A. et al. Thör: Human-robot navigation data collection and accurate motion trajectories dataset. IEEE Robotics and Automation Letters. 5, 676–682 (2020).

    Article 

    Google Scholar 

  • Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. 779–788 (2016).

  • Thrun, S. Probabilistic robotics. Communications of the ACM. 45, 52–57 (2002).

    Article 

    Google Scholar 

  • Obo, T. & Yasuda, E. Intelligent fuzzy controller for human-aware robot navigation. In 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics. 392–397 (IEEE, 2018).

  • Chen, C., Liu, Y., Kreiss, S. & Alahi, A. Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning. In 2019 International Conference on Robotics and Automation (ICRA). 6015–6022 (IEEE, 2019).

  • Robicquet, A., Sadeghian, A., Alahi, A. & Savarese, S. Learning social etiquette: Human trajectory understanding in crowded scenes. In European conference on computer vision. 549–565 (Springer, 2016).

  • Oh, S. et al. A large-scale benchmark dataset for event recognition in surveillance video. In CVPR 2011. 3153–3160 (IEEE, 2011).

  • Geiger, A., Lenz, P. & Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 3354–3361 (IEEE, 2012).

  • Yan, Z., Duckett, T. & Bellotto, N. Online learning for human classification in 3d lidar-based tracking. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 864–871 (IEEE, 2017).

  • Dondrup, C., Bellotto, N., Jovan, F. & Hanheide, M. Real-time multisensor people tracking for human-robot spatial interaction In ICRA workshop on machine learning for social robotics. (2015).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *